
# PowerTech ™ 6068HF475 Diesel Engine



**Generator Drive Engine Specifications** 



| Performance | data | range |
|-------------|------|-------|
| 1 CHOIMUNCC | uutu | runge |

**Compression Ratio** 

Engine Type

Aspiration

|             |              | 0       |         |         |                         |          |      |                                 |         |         |         |         |
|-------------|--------------|---------|---------|---------|-------------------------|----------|------|---------------------------------|---------|---------|---------|---------|
| Rated speed | Engine power |         |         |         |                         | in power |      | Calculated generator set output |         |         |         |         |
|             | Prime        |         | Standby |         | Generator<br>efficiency |          |      | Power<br>factor                 | Prime   |         | Standby |         |
| Hz(rpm)     | kW           | hp      | kW      | hp      | %                       | kW       | hp   |                                 | kWe*    | kVA     | kWe     | kVA     |
| 50(1500)    | 166-188      | 223-252 | 184-207 | 247-278 | 89-93                   | 6.5-10.4 | 9-14 | 0.8                             | 142-165 | 177-206 | 157-183 | 196-229 |

Prime power is the nominal power an engine is capable of delivering with a variable load for an unlimited number of hours per year. This rating conforms to ISO3046 and SAE J1995.

17.0:1

In-line, 4-Cycle

Turbocharged and air-toair aftercooled

> Standby power is the maximum engine power available at varying load factors for up to 200 hours per year when applied to conform with ISO 8528-1. This rating conforms to ISO 3046 and SAE J1995. Calculated generator set rating range for standby applications is based on minimum engine power (nominal -5 percent) to provide 100 percent meet-or-exceed performance for assembled standby generator sets. \*Electrical power is calculated from the typical generator efficiency and fan power percentages shown. Applications may vary.

# **Features and Benefits**

## High Pressure Common Rail Fuel System

 Higher injection pressures, up to 1600 (23,000 PSI), variable injection pressure, variable timing control, multiple injections

# Dynamically Balanced Crankshaft

- Induction-hardened journals for long hours of reliable service
- Robust design to drive machinery from the front of the crankshaft
- Supported by seven main bearings

## **Forged-Steel Connecting Rods**

 45-degree connecting rod/cap-joint design allows the use of large connecting rod bearings for increased durability

## Replaceable Wet-type Cylinder Liners

- Provide excellent heat dissipation
- Precision machined for long life
- Rebuild to original specifications

## Easy to Apply, Easy to Install

- Front and rear engine mounting pads on the side of the block facilitates installations
- Auxiliary drive rated to 50 hp (37 kW) intermittent for powering ancillary equipment
- Either side service for filters and service points facilitates packaging
- All connection points in common locations make it easy to install or package

## Compact Size

- Short length is ideal for both skid and packaged installations
- High mount or low mount turbocharger position to meet packaging requirements

## World-class Performance

- Excellent fuel economy and low oil consumption

#### Fuel System Controls

- 12V or 24V Electric Shutoff
- Emissions
- EU Stage II

John Deere Power Systems 3801 W. Ridgeway Ave. PO Box 5100 Waterloo, IA 50704-5100 Phone: 1-800-533-6446 Fax: 319.292.5075 John Deere Power Systems Usine de Saran La Foulonnerie - B.P. 11.13 45401 Fleury les Aubrais Cedex France Phone: 33.2.38.82.61.19

Fax: 33.2.38.82.60.00

All values at rated speed and power with standard options unless otherwise noted. Specifications and design subject to change without notice.