
PowerTech [™] PSX 6090HFC95 Diesel Engine

Industrial Engine Specifications

Dimensions may vary according to options selected. Call your distributor for more information.

General data			
Model	6090HFC95	Length - mm (in)	1266.6 (49.9)
Number of cylinders	6	Width - mm (in)	841.7 (33.1)
Displacement - L (cu in)	9.0 (549)	Height mm (in)	1344.0 (52.9)
Bore and Stroke mm (in)	118.4 x 136 (4.66 x 5.35)	Weight, dry - kg (lb)	1096.8 (2418)
Compression Ratio	16.0 : 1		
Engine Type	In-line, 4-cycle		
Aspiration	Turbocharged and air-to- air aftercooled		

Performance data range

r on onnance data range			
Application ratings	Intermittent	Heavy Duty	Continuous
Rated power/Rated speed	261-317 kW(350-425 hp) @2000- 2200rpm	260-261 kW(350 hp) @2200rpm	242 kW(325 hp) @2000-2200rpm
Peak power	287-317 kW (385-425 hp) @1800- 2200rpm	268-287 kW (359-385 hp) @1900- 2000rpm	266-267 kW (357-358 hp) @1700- 2000rpm
Power bulge	0-10% @ 1800-2000rpm	2-10% @ 2000rpm	10% @ 1800-2000rpm
Peak torque	1683-1685 N.m (1241-1243ft-lb) @1600rpm	1563 N.m (1153ft-lb) @1600rpm	1444-1590 N.m (1065-1173ft-lb) @1600rpm
Torque rise	22-35%	38%	38%

The Industrial Intermittent engine power rating is for applications that operate at varying loads and speeds, and do not fit the Industrial Heavy-Duty rating information.

Some applications requ ire Industrial Heavy-Duty engine power ratings. Please contact your John Deere Power Systems engine distributor for more information. The Industrial Continuous engine power rating is for applications that operate with constant load and speed, except for short periods during startup or shutdown.

Power output is within + or - 5% at standard SAE J 1995 and ISO 3046.

DOC/DPF Dimensions

Size	7
Diameter - mm (in)	379 (14.9)
Length - mm (in)	837.8 (33.0)
Weight - kg (lb)	65.1 (143.5)

See your John Deere Power Systems engine distributor for more information on available filter size options.

Features and Benefits

Series Turbochargers

- Fresh air is first drawn into the low-pressure turbocharger (fixed geometry) and compressed to a higher pressure. The compressed air is then drawn into the high-pressure turbocharger (VGT), where the air is further compressed. The high-pressure air is then routed through a charge air cooler and into the engine's intake manifold.
- By splitting the work between two turbochargers, both can operate at peak
 efficiency and at slower rotating speeds lowering stress on turbocharger
 components and improving reliability. Series turbocharging deliver s more
 boost pressure than single turbocharger configurations which results in
 higher power density, improved low-speed torque, and improved high
 altitude operation.

Cooled Exhaust Gas Recirculation (EGR)

- EGR cools and mixes measured amounts of cooled exhaust gas with incoming fresh air to lower peak combustion temperatures, thereby reducing NOx.

Exhaust Filters

- These engines utilize a catalyzed exhaust filter that contains a diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF). The DOC reacts with exhaust gases to reduce carbon monoxide, hydrocarbons, and some particulate matter (PM). The downstream DPF traps and holds the remaining PM. Trapped particles are oxidized within the DPF through a continuous cleaning process called passive regeneration.
- Passive regeneration occurs during normal operating conditions when heat from the exhaust stream and catalysts within the exhaust filter trigger the oxidation of the trapped PM. If passive regeneration cannot be achieved due to low temperature, load, or speed, then PM is removed using active regeneration - an automatic cleaning process controlled by the exhaust temperature management system.

High-Pressure Common-Rail (HPCR) and Engine Control Unit (ECU)

 The HPCR fuel system provides variable common-rail pressure, multiple injections, and higher injection pressures up to 1,975 bar (29,000 psi). It also controls fuel injection timing and provides precise control for the start, duration, and end of injection.

4-valve Cylinder Head

 The 4-valve cylinder head provides excellent airflow resulting in greater lowspeed torque and better transient response time by utilizing a U-flow design.

Air-to-Air Aftercooled

- This is the most efficient method of cooling intake air to help reduce engine emissions while maintaining low-speed torque, transient response time, and peak torque. It enables an engine to meet emissions regulations with better fuel economy and the lowest installed costs.

Compact Size

- Lower installed cost; mounting points are the same as previous engine models

Engine Performance

 Multiple rated speeds to further reduce noise and improve fuel economy; higher level of peak torque; transient response time equal to or better than Tier 3/Stage III A; low-speed torque equal to or better than Tier 3/Stage III A

John Deere Electronic Engine Controls

 Faster engine control unit (ECU) manages both the engine and the exhaust filter; full authority electronic controls; four times the memory, twice the RAM and double the processing speed; the input/output capability has increased 40%

Additional Features

 Gear-driven auxiliary drives, 500-hour oil change, self-adjusting poly-vee fan drive, single-piece low-friction piston, directed top-liner cooling, lowpressure fuel system with electrical transfer pump and "auto-prime" feature, and optional rear PTO

John Deere Power Systems 3801 W. Ridgeway Ave. PO Box 5100 Waterloo, IA 50704-5100 Phone: 1-800-533-6446 Fax: 319.292.5075

John Deere Power Systems Usine de Saran La Foulonnerie - B.P. 11.13 45401 Fleury les Aubrais Cedex France Phone: 33.2.38.82.61.19

Fax: 33.2.38.82.60.00

All values at rated speed and power with standard options unless otherwise noted. Specifications and design subject to change without notice.